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Stability and heat transfer of rotating cryogens. 
Part 2. Effects of rotation on heat-transfer 

properties of convection in liquid 4He 

By J. M. PFOTENHAUER, P. G. J. LUCASt 
AND R. J. DONNELLY 

Department of Physics, University of Oregon, Eugene, OR 97403 

(Received 13 October 1983 and in revised form 23 March 1984) 

Heat-transfer measurements have been made in normal liquid 4He contained within 
a rotating, cylindrical, cryogenic BBnard cell with variable aspect ratio. Data are 
presented for a range of dimensionless angular velocities 0 < SZ < 600 and Prandtl 
numbers 0.49 < Pr < 0.76 and for three aspect ratios r o f  7.81,4.93 and 3.22. Where 
possible, comparisons are made with theoretical predictions and past experiments 
concerning heat transfer in rotating fluids. 

1. Introduction 
The heat-transfer properties of a rotating BQnard convection system have received 

sparse attention in the experimental arena compared to that given them by the many 
theoretical papers of the past few decades. There are early experimental reports by 
Fultz & Nakagawa (1955) and by Dropkin & Globe (1959) concerning the effect of 
rotation on the heat transport through convecting mercury. A later study by 
Koschmieder (1967) reports on a rotating BBnard system in which silicone oil is used 
as the convecting fluid. Koschmieder’s results imply increases in heat transfer at  
Rayleigh numbers below those critical values given by linear stability theory, and 
he demonstrates that these effects are most likely caused by centrifugally induced 
flows. A significant amount of heat-transfer data is presented by Rossby (1969), using 
water and mercury. The results he obtained with mercury verified some aspects of 
Veronis’ (1968) finite-amplitude effect predictions, but those obtained with water 
presented some unexpected results which will be discussed later in this paper. These 
few reports comprise the experimental work on heat transfer in a rotating BBnard 
system. The theoretical work, on the other hand, is rich in both quantity and variety 
of topics addressed. A few examples are the papers by Veronis (1959, 1966, 1968) 
introducing finite-amplitude effects, those by Daniels & Stewartson (1977, 1978a) on 
spatial oscillations and overstability, those by Homsy & Hudson (1971, 1972) on 
cell-size and centrifugal effects, and that by Clever & Busse (1979) on stability 
boundaries. 

Apart from their own intrinsic interest, past work has shown that heat-transfer 
properties can be helpful in understanding other related properties of thermal 
convection. In the non-rotating case there are a number of examples. For some time 
discrepancies existed between theory and experiment regarding the dependence of 
the wavelength of the convection pattern and the magnitude of the heat transfer on 
the supercritical Rayleigh number. Willis, Deardorff & Sommerville (1972) resolved 

t Permanent address: Department of Physics, The University, Manehester M13 9 PL, England. 



240 J .  M .  Pfotenhauer, P. G. J .  Lucas and R. J .  Donnelly 

both discrepancies by showing that compatible Nusselt numbers could be obtained 
if one used larger wavelengths (as seen in experiment) in the analysis predicting the 
heat transfer. The recent heat-transfer work ofBehringer & Ahlers (1982) demonstrates 
the development of stable and metastable patterns of convection, each displaying 
different heat-transfer characteristics. A related report by Ahlers et al. (1981) gives 
additional information regarding these stable and metastable states, suggesting that 
they may be concentric rolls and hexagons respectively. 

The experimental heat-transfer report presented here is given in part as a response 
to the many theoretical predictions, and in part as an aid to understanding the 
general properties of a convecting fluid under the influence of rotation. In  $2 we give 
a brief description of the apparatus used and the method of data gathering, as well 
as comments regarding the uncertainties involved in the data. Section 3 contains a 
discussion of the initial slopes of the nonlinear heat-transfer data and includes a 
description of nonlinear heat transfer for the subcritical mode of convection referred 
to in Part 1 (Lucas, Pfotenhauer & Donnelly 1983). This is done in order to gather 
all the heat-transfer data in the present paper. A detailed experimental investigation 
of the subcritical mode is presently in progress. Section 4 contains a discussion of 
heat-transfer enhancement by rotation. A summary discussion is given in $ 5.  

2. Apparatus and data acquisition 
We have conducted experiments using helium I, the normal phase of liquid helium 

(above the lambda transition) to study the heat transfer of a rotating convection 
system in cylindrical cells of aspect ratios r = 7.81, 4.93, 3.22 (where r is defined 
as the ratio of the cell’s radius R to its height d) .  The dimensions and the related 
uncertainties of these cells are given in table 1 .  Here the wall thickness is represented 
by 6. The bulk of the data presented in this paper is from work done with the r = 7.81 
cell, the design of which has been presented in Part 1 .  The design of the r = 4.93 
and 3.22 cells is shown in figure 1. All electrical connections are the same as for the 
r = 7.81 cell, and these details are omitted for clarity. Note that the stainless-steel 
wall is made to be an interchangeable part, sealed to the copper pieces with indium 
O-rings and bolts, thus giving freedom and relative ease in changing r by changing 
the cell height d.  A helium reservoir has been added to the basic cell design described 
in Part 1 to facilitate the use of a free surface for the liquid to maintain its pressure 
at  the saturated vapour pressure. Helium is condensed into the reservoir from a fill 
line connected to a volume of 4He gas as described in Part 1. A 0.16 cm hole has been 
drilled into the bottom of the reservoir, to about halfway down through the top of 
the upper copper boundary of the cell, at which point the hole turns, coming out of 
the copper to the inside of the stainless-steel cylinder, which defines the vertical wall. 
Even with the press fit of the copper boundary in the stainless-steel cylinder, there 
is sufficient room for helium to flow from the reservoir to the cell; thus the cell is filled 
in the same condensing process that partially fills the reservoir. 

We were careful both in the machining and assembly of the r = 4.93 and 3.22 cells 
to ensure that the two copper pieces defining the horizontal cell boundaries were 
parallel. It is expected (Behringer & Ahlers 1982) that if they were not parallel some 
rounding of the Nusselt-number Nu,  Rayleigh-number Ra data would show up near 
R,, the critical value of the Rayleigh number above which the fluid convects. Should 
rounding of this sort appear, it would do so in every run and would not disappear 
unless the boundaries were made parallel. The majority of our runs, both rotating 
and non-rotating, displayed essentially no rounding. a, as defined below, is typically 
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r R (em) d (em) 8 (em) 
7.81 1.245 (0.001) 0.1595 (0.0007) 0.025 (0.0013) 
4.93 0.809 (0.001) 0.164 (0.001) 0.017 (0.0013) 
3.22 0.809 (0,001) 0.251 (0.001) 0.017 (0.0013) 

TABLE 1 .  Cell dimensions and their uncertainties 

FIGURE 1.  Rayleigh-BBnard experimental cell : A, stainless-steel walls of helium reservoir; B, 
toroidal metal film resistor H,; C, germanium resistance thermometer R,,; D, copper-braid heat 
leak to bath; E, volume occupied by fluid; F, 0.05 cm indium O-ring; G, germanium resistance 
thermometer R,, ; H, copper thermal shield clamped to upper boundary ; I, vapour-pressure bulb ; 
J, germanium resistance thermometer R,; K,  fill line from reservoir to cell; L, interchangeable 
stainless-steel tube defining vertical cell walls; M, germanium resistance thermometer R,; N, 
metal-film resistor H,; 0, feedthrough. 

of order 0.001. I n  a few cases, however, experimental noise produced data that 
appeared to be rounded. We define the amount of rounding in the following manner. 
The critical Rayleigh number R, is determined by a quadratic fit to the Nusselt- 
number, Rayleigh-number data as described in 55.2 of Part  1.  We can then define the 
parameter E = Ra/R,. For a rounded transition there would be some E‘ < 1 for which 
NU(&’) rises above unity by some threshold amount. A reasonable experimental value 
for this threshold is Nu = 1.005. The amount of rounding can then be quantified by 
the parameter a = 1 -d. For the non-rotating runs the largest value of 01 was 0.09, 
while a was of order 0.001 for the rotating runs. Since the apparent rounding appeared 
in only a very few of all the runs, we have concluded that the horizontal boundaries 
are parallel to each other and the Earth’s surface and perpendicular to the axis of 
rotation. 

All raw data (that is, W,, the heat input a t  the bottom of the cell, and AT, the 
resultant temperature difference across the cell) have been recorded and reduced to 
Rayleigh-number, Piusselt-number form as described in Part 1 .  The angular rotation 
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ratc Q, is converted to dimensionless form by putting Q = !2,d2/v; where v is the 
kinematic viscosity. For comparison, the Taylor number is defined as Ta = 4Q2. I n  
the data that are presented below, least-squares fits are made to the (Nu, Ra)-data, 
and uncertainties are given for the coefficients obtained from these fits. I n  recent data 
that we have taken (for which r= 3.22), we observed fluctuations in successive 
measurements of AT. These uncertainties were typically about 7 pK and should be 
compared with critical values of AT from - 0.5 mK for Q = 0 to - 50 mK for the 
high-rotation runs. The uncertainties in AT, together with the uncertainties in W, 
(typically 0.5 % of WF) given by the resolution of our voltmeter and ammeter, enabled 
us to calculate the uncertainties in Nu. These were necessary to obtain the 
uncertainties for the coefficients of the fits we discuss below. For data taken before 
this statistical analysis of A T  was implemented, the uncertainties in Nu for a given 
run were taken to be all equal and approximated by the square root of the sample 
variance. That is, 

( 1 )  0- Nu- - -  [ N-n z [NU, -.wut)y]i. 
i 

where N is the number of data points, n- 1 is the degree of the polynomial fit, and 
f(Nui) is the value of the polynomial function of Nu (at the point Nut) being fitted 
to  the data. Both methods used to determine the uncertainties in the coefficients of 
the fits yielded very similar results for similar conditions. 

3. Initial slopes of the nonlinear heat-transfer data 
3.1. Data and fits 

Each run of our experiment gathered Nusselt-number, Rayleigh-number data a t  a 
set rotation rate Q, the range of rotation rates covered being 0 d SZ < 600. We also 
made rotation studies a t  various temperatures in the range 2.186 K < T, < 3.7 K, 
where T, is the controlled temperature a t  the top of the cell. When no subcritical 
convection mode was observed (see $3.2) the values of the critical Rayleigh number 
R, were determined as described in $5.2 of Part 1 .  We wish to note here a correction 
to the data presented in Part 1 for which T, = 3.178 K. Owing to a computer- 
programming error, an erroneous calibration was used to determine the values of AT 
a t  this value of T,. The raw data have been reanalysed with the correct S versus A T  
calibration, and the resultant critical Rayleigh numbers appear in table 2. These 
corrected values fall very close to those obtained at T, = 2.63 K and 2.4 K and leave 
all our critical Rayleigh numbers measured with helium I below the theoretical R,(Q) 
values. 

We noted in Part  1 that the values of R, for any given Q were temperature-dependent 
and lower than the theoretical values of R,(O), and we have attributed this 
discrepancy to imperfect values of the fluid parameters of helium I. The reader should 
note that, although the variation in R, as a function of T, (described in Part 1 )  is 
as large as 20 % , determination of R, at individual temperatures and rotation rates 
displayed a scatter of only a few per cent at most. This scatter is determined by the 
uncertainties in AT described in $ 2. 

A few non-rotating runs performed with the r = 4.93 cell display R, values (see 
table 2) close to those given in Part 1 ,  and generally follow the temperature variations 
of R, described in Part 1.  For each run the data above R, were fitted to the equation 

i 
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4.93 

3.22 

3.1 0.53 4.93 

3.178 0.55 7.81 

Tc Pr r a Rs, 
2.186 0.76 7.81 452 47 600 

2.198 0.71 4.93 0 - 

2.24 0.61 4.93 0 - 

2.63 0.49 7.81 160 15300 
192 19 000 
256 26 300 
320 34 500 
452 49 800 
554 64 300 

121 10600 
145 12900 
193 17700 
217 20 200 
24 1 23 300 
100 8010 
110 8910 
135 10800 
170 14300 
194 16 400 
22 1 18 900 

4.93 0 - 

0 - 

0 

0 
32 
64 
96 

128 
160 
192 
452 49 800 
554 63 200 

- 

- 
- 

- 

- 

- 
- 
- 

t Values revised from those appearing in table 2 of Part 1. 

TABLE 2. Values of subcritical and critical Rayleigh numbers 

R, 
56 000 

1220 

1380 

1280 

15 900 
20000 
28 800 
38 900 
58 300 
76 800 

1350 
11 000 
13 500 
19 100 
21 900 
25 200 
18 430 
9 900 

12400 
16 000 
18900 
23 300 

1370 

1370t 
2 830f 

8 330t 
11 500t 
15200t 
19 200t 
57 000 
74000 

5400t 

by a method of least squares in order to determine the coefficients Ni as well as the 
uncertainties in those coefficients. We have investigated the effects of varying R, over 
the range corresponding to the uncertainty in AT on the deduced values of N ,  and 
N,. This variation of R, modifies the values of Nl and N ,  by less than 2 % in the worst 
case. The upper bound of the Rayleigh number used in the fits was chosen to be 
R a  z 1.5R,. This enabled the convexity of the Nusselt number as a function of the 
reduced Rayleigh number, as well as the initial slope N,,  to be determined. The 
standard x2 goodness-of-fit test (see e.g. Bevington 1969) was used to determine 
whether a cubic, quadratic or linear form of (2) produced the best fit to the data. 
I n  all but a few cases the quadratic form afforded the best fit. Results for N,,  rN,, 
N ,  and uNz as well as T,, r, SZ and the Prandtl number Pr = v / D ,  (DT is the 
thermal diffusivity of the fluid) a t  temperature T, for the various runs are presented 
in table 3. 

Because of the variation in values of R, with T,, we have concentrated on one 
temperature, T, = 2.63 K, for which Pr = 0.49. The majority ofgraphs and discussion 
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2.63 0.49 7.81 

4.93 

3.22 

3.1 0.53 4.93 

3.178 0.55 7.8 

3.178 0.55 7.81 

3.425 0.59 7.81 

Tc Pr r s2 

2.186 0.76 7.81 0 
16 
32 
64 

452 

4.93 0 

2.198 0.71 4.93 0 

2.24 0.61 4.93 0 

2.4 0.51 7.81 0 
32 
64 
96 

128 
160 
192 

0 
32 
64 
96 

128 
160 
192 
256 
320 
452 
554 

0 
121 
145 
193 
217 
241 

100 
110 
135 
170 
193 
220 

0 

0 
32 
64 
96 

128 

160 
192 
452 
554 

0 
32 
64 
96 

128 

N 1 ( U N , )  

0.940 (0.033) 
0.934 (0.054) 
1.108 (0.057) 
1.188 (0.042) 
2.058 (0.068) 

0.597 (0.187) 

0.779 (0.036) 

0.822 (0.060) 

0.989 (0.053) 
1.053 (0.087) 
1.256 (0.055) 
1.334 (0.050) 
1.450 (0.034) 
1.591 (0.046) 
1.635 (0.082) 

0.758 (0.048) 
1.164 (0.049) 
1.104 (0.018) 
1.379 (0.062) 
1.482 (0.027) 
1.467 (0.023) 
1.572 (0.022) 
1.715 (0.037) 
1.806 (0.064) 
2.058 (0.018) 
2.226 (0.036) 

0.660 (0.043) 
1.603 (0.026) 
1.655 (0.031) 
1.694 (0.033) 
1.688 (0.035) 
1.724 (0.039) 

1.407 (0.080) 
1.528 (0.016) 
1.779 (0.027) 
1.636 (0.025) 
1.800 (0.020) 
1.812 (0.039) 

0.619 (0.090) 

0.922 (0.095) 
0.848 (0.026) 
1.183 (0.095) 
1.318 (0.039) 
1.278 (0.051) 

1.495 (0.017) 
1.509 (0.034) 
1.974 (0.013) 
2.075 (0.013) 

0.679 (0.108) 
1.029 (0.215) 
1.175 (0.064) 
1.280 (0.075) 
1.408 (0.081) 

N & N J  

-0.488 (0.063) 
-0.268 (0.101) 
-0.382 (0.104) 
-0.330 (0.079) 

0.022 (0.128) 

0.226 (0.457) 

-0.172 (0.102) 

-0.351 (0.112) 

-0.559 (0.106) 
-0.027 (0.179) 
-0.365 (0.105) 
-0.403 (0.098) 
-0.428 (0.060) 
-0.410 (0.077) 
-0.373 (0.162) 

-0.245 (0.089) 
-0.406 (0.086) 
-0.170 (0.032) 
-0.488 (0.105) 
-0.428 (0.042) 
-0.282 (0.049) 
-0.280 (0.047) 

-0.022 (0.187) 
-0.122 (0.037) 
-0.252 (0.080) 

-0.130 (0.070) 
-0.706 (0.055) 
-0.616 (0.067) 
-0.433 (0.072) 
-0.323 (0.086) 
-0.266 (0.079) 

-0.395 (0.212) 
-0.546 (0.021) 
-0.990 (0.059) 
-0.481 (0.047) 
-0.703 (0.037) 
-0.597 (0.071) 

-0.226 (0.100) 

-0.120 (0.090) 

-0.397 (0.192) 
-0.426 (0.086) 
-0.221 (0.100) 

-0.339 (0.029) 
-0.199 (0.073) 

0.204 (0.030) 
0.378 (0.027) 

0.021 (0.212) 
-0.115 (0.386) 
-0.320 (0.107) 
-0.336 (0.131) 
-0.319 (0.153) 
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Tc Pr r 52 N , ( U N , )  N d U N J  

160 1.392 (0.029) -0.144 (0.064) 
192 1.557 (0.042) -0.247 (0.067) 

3.635 0.63 7.81 32 1.095 (0.095) -0.115 (0.172) 
64 1.142 (0.086) -0.154 (0.142) 
96 1.323 (0.076) -0.291 (0.144) 

128 1.651 (0.027) -0.590 (0.050) 
160 1.627 (0.054) -0.405 (0.101) 
192 1.580 (0.027) -0.165 (0.053) 

TABLE 3. Summary of heat-transfer coefficients for various Pr, r and B 

that follow thus apply most directly to that case (the obvious exception being $4.2). 
The general trends mentioned are, however, true of data gathered at the other 
temperatures. 

In figure 2 we have displayed N,,  the initial slope, as a function of 52 for runs at  
T, = 2.63 and r = 7.81, with figure 3 showing some of the data in the (Nu, Ra/R,)- 
form from which the initial slopes were computed. From the data shown in figures 2 
and 3, and from the data for all Pr given in table 3, i t  can be seen that N ,  displays a 
large increase as R is increased to approximately 100. As 52 is further increased, 
N ,  continues to increase, although at  a slower rate. From the calculations and results 
given by Veronis (1968) for Pr = 6.8, r = co and for 0 < 52 c 160 (see especially table 
1 and figure 2 of his paper), it is clear that one should expect an increase in Nl as 
R is increased from 0. The results given by Veronis imply an initial slope rising from 
1.2 for R = 0 to 1.6 for R = 158. Though our data for Pr = 0.51 and r= 7.81 give 
initial slopes slightly smaller than those obtainable from Veronis’ results, the general 
behaviour is the same. 

The use of the initial slope as a measure of the increase of heat transfer above the 
onset of convection has received repeated attention in the literature pertaining to 
non-rotating systems, and as Behringer & Ahlers (1982) report, there is good 
agreement between experiment and theory regarding the dependence of the initial 
slope on the aspect ratio r; that is, for SZ = 0 the initial slope increases with r. 
Charlson & Sani (1975) have attributed this behaviour to an increasing stabilizing 
effect of the sidewalls on the convective motions as r is decreased. Ahlers et al. (1982) 
also argue that more than one convective pattern is likely to exist near R, and these 
different patterns produce different values of N,.  Our data for r = 7.81 and 52 = 0 
fall roughly in two groups, one centred around Nl = 0.7 and the other centred around 
N ,  = 0.96. For comparison, Behringer & Ahlers (1982) obtain N ,  = 0.83 for their cell 
A of aspect ratio r= 4.72 in its stable mode. There is obvious scatter in our data 
from one Prandtl number to another. We believe these variations are real and that 
they reflect variations in heat transfer from different convective patterns, or a 
mixture thereof, present in our data. 

We have also observed that Nl increases with r when 52 = 0. Data taken at  
T, = 2.186 K and at  T, = 2.63 K (see table 3) have confirmed this behaviour. 
However, as the data taken at  T, = 2.63 K for higher values of SZ display (see figure 
4), this dependence is reversed in the range 100 < R < 250. The reason for this 
reversal is possibly connected with the subcritical convective mode (discussed in $ 3.2), 
but it is clear that sidewalls do not have as stabilizing an effect on the heat transfer 
of a rotating convection system as they do in the non-rotating case. 
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1.5 

? 
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- P r =  0.49 
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- 

4 1  

ii 8 
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T 
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0 100 200 300 400 500 600 
sz 

FIGURE 2. The effect of rotation on the initial slope N ,  of heat transfer: 0 ,  N ,  for corivection 
above R,; x , N ,  for convection in subcritical mode. 

I I I 
T = 2.63 K X 
’r = 0.49 
r = 7.81  X 

X 
X 

^ ^ I  X 

0.5 

0.5 1 .O 1.5 2.0 

FIGURE 3. Nusselt number us. reduced Rayleigh number; a composite plot of (Nu, Ra/R,)-data 
for various rotation rates: 0 ,  R = 0; +, 32; 0, 128; 0, 192; X ,  452. Data for Ra/R, < 1 .1  are 
given as solid lines for clarity. The data from runs for which R = 32 and 128 are essentially the 
same below Ra/R, = 1.1 and are represented by a single line. 

- RaIR, 

3.2. Subcritical heat transfer 
In  table 4 we present some initial heat-transport data on a convective mode which 
we have referred to as ‘subcritical’ in Part 1 .  The term subcritical is used in the 
following sense. In  runs at individual temperatures, and at all values of Q for which 
no subcritical convection is observed, values of R, fall at a certain percentage below 
the theoretical values of R,(Q).  This discrepancy is attributed to faulty knowledge 
of the fluid parameters of helium I. The observed values of R,(Q) at T, = 2.63 K, 
for instance, all fall - 10 yo below the theoretical values. When the subcritical mode 
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2.0 

1 3  

1.6 

1.4 
N1 

1.2 

1 .O 

0.8 

0.6 

1 I I i i 

T, = 2.63 K 

8 I I 1 1 

0 50 100 150 200 250 
n 

FIQURE 4. Influence of aspect ratio on initial slopes; N ,  is shown as a function of a with 
r a s  a parameter: 0 ,  r= 7.81; A, 4.93; 0, 3.22. 

4.93 

3.22 

Tc Pr r a Nl ( U N  1 ) N&NJ 

2.186 0.76 7.81 452 0.457 (0.075) -0.687 (0.659) 

3.178 0.55 7.81 452 0.510 (0.072) - 1.08 (0.488) 
554 0.357 (0.074) -0.080 (0.416) 

2.63 0.49 7.81 160 0.607 (0.252) 
192 0.470 (0.075) 
256 0.386 (0.062) 
320 0.349 (0.093) 
452 0.323 (0.045) 0.022 (0.234) 
554 0.323 (0.028) 

121 0.387 (0.273) 
145 0.721 (0.207) 
193 0.595 (0.132) 
217 0.529 (0.125) 
24 1 0.519 (0.079) 

100 1.544 (0.675) -18.7 (14.3) 
110 1.442 (0.085) -6.05 (0.69) 
135 0.622 (0.026) 
170 0.574 (0.025) 
193 0.771 (0.015) 
220 0.693 (0.023) 

1000 0.864 (0.001) 
1347 0.925 (0.001) 

TABLE 4. Subcritical heat-transfer coefficients 

is present with its initial increase in Nu, another change in the heat-transfer slope 
occurs a t  higher Rayleigh numbers. These higher values of Ra are the same percentage 
( -  10% for T, = 2.63 K) below the theoretical values of RJSZ), leading one to 
associate this critical Rayleigh number with the onset of steady convection as 
predicted by the standard theories. The first increase in Nu is thus at  R,,, some 
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subcritical value of the Rayleigh number. It is worth noting here that Homsy & 
Hudson (1971) have reanalysed data taken by Rossby (1969) displaying subcritical 
flows in water, and show that in Rossby’s data the second and larger increase in Nu 
occurred a t  Rayleigh numbers coincident with the theoretical values of R,(Q). 

The values of R,, were determined in the same way as R, was determined when 
the subcritical mode was not present. When the subcritical mode was present, the 
experimental values of R, were determined by the intersection of the fit to the 
subcritical data with the quadratic fit to the data above the second increase in Nusselt 
number. Table 2 lists values of R,, obtained since publication of Part 1, as well as 
values of R,,. 

Considering the increase in N, with decreasing r mentioned in $3.1, we have noted 
(as did Rossby) that a decrease in r results in larger increase in Nu above R,,. It 
is likely that above R, the normal convective flow would be superimposed on the 
subcritical flow and thus the effects of a decrease in r, for a fixed SZ, would show up 
as an increased N ,  even in the normal convective flow. 

4. Inhibitions and enhancements of heat transfer 
4.1. General inhibitions 

From table 3 and figures 2, 3 and 4, one might get the impression that convective 
heat transfer is generally enhanced by rotation. In fact the opposite is true; rotation 
has an inhibiting effect on convective motions. We have shown in Part 1 that the 
onset of convection is inhibited by rotation, as was predicted by Chandrasekhar (1961) 
and others. Rotation also inhibits the amplitude of convection or the heat transfer, 
once convection sets in. This is demonstrated in figure 5 ,  where it can be seen that, 
once the fluid is convecting, d(Nu)/d(Ra) decreases with increasing 0. Veronis (1966) 
attributed this inhibiting effect of rotation on the amplitude of convection to a 
‘geophysical thermal wind ’. The explanation given is basically that the Coriolis force 
produces a vertical shear perpendicular to the horizontal flow in a convecting cell, 
and this shear then inhibits the amplitude of that flow. The term ‘thermal wind’ is 
given because the horizontal flows are driven by (and proportional to) the horizontal 
temperature gradient of the perturbed temperature field. 

One should not see the decrease of d(Nu)/d(Ra) as contradicting the increase of 
N, with SZ, indeed the two behaviours are simply related since N, = R,[d(Nu)/d(Ra)]. 
Thus N, increases with SZ, since the increase in R, with 52 is greater than the decrease 
in d(Nu)/d(Ra) with SZ. 

4.2. An enhancement of heat transfer at small rotation rates 

For small values of SZ and for a limited range of Pr, we found that d(Nu)/d(Ra) 
increased with 52 - an exception to the observations presented in $4.1. A similar 
behaviour has in fact been predicted by Clever & Busse (1979). In figure 7 of their 
paper they show that for Pr 4 1 and for Ra - R, = 2 x lo3 one can expect a monotonic 
increase in N u  with 52 for 0 Q 52 6 50. For Pr > 1 ,  however, one can expect a 
monotonic decrease in Nu with increasing SZ. In the range 0.3 < Pr < 0.6 there is a 
complicated region in which one should expect an increase in Nu from SZ = 0 to 
0 = 30, but, as 52 is increased to 50, Nu drops again. Measuring Nu at this fixed 
distance above R,(SZ) essentially measures the slope of the heat transfer above R,(Q). 

In figure 6 we display data for 0 < Q < 100, 0.49 < Pr < 0.76, and for which 
Ra-R, = 2 x lo3 (the dashed lines have no theoretical significance). The general 
behaviour suggested by Clever & Busse is verified; that is, in the region Pr N 0.5, 
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FIGURE 5. Inhibition of heat transfer; (Nu, Ru)-plots a t  various rotation rates displaying reduced 
heat transfer in convection with increasing a; 0 ,  = 0; +, 128; 0, 192; A, 256; x ,320; 0 ,452.  
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FIGURE 6. Relative enhancement of heat transfer; Nusselt numbers a t  R a - R ,  = 2 x lo3 as 
functions of rotation rate a and Prandtl number Pr. The dashed lines are simply a suggestion for 
the trend of the data. 
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Nu increases as 52 is increased from 0 to 30, and decreases for higher 52, but, as Pr 
is increased to 0.76, the Nusselt number drops continuously as 4 is increased. This 
seemingly critical nature of 4 % 30 should not be interpreted as resulting from the 
instability described by Kuppers & Lortz (1969) and Kuppers (1970), which occurs 
at 4 x 27 for the Prandtl range of helium. Clever & Busse (1979) have suggested that 
the Nusselt number would not be sensitive to this instability. More importantly, 
however, whereas the analysis of Kuppers & Lortz was for Pr = 00 and extended by 
Kuppers for all Pr, the results described here are expected only for the limited 
Prandtl-number range 0.3 < Pr < 0.6. 

The results of this investigation differ from the predictions of Clever & Busse, 
however, in one important aspect. Whereas Clever & Busse predict the changes in 
Nu with Pr to occur when SZ > 0, we find the changes only for SZ = 0. I n  particular, 
figure 6 shows that Nu at Ra- R,(4) = 2 x lo3 and for a given 4 > 0 is essentially 
the same for all Pr. However, when 4 = 0 the values of Nu increase as Pr increases 
from 0.49 to 0.76. Additional data taken in this manner for 4 = 0 at Pr = 0.61 
(Nu = 1.68) and Pr = 0.71 (Nu = 1.79) confirm this behaviour. 

4.3. Investigation of heat-transfer enhancement at absolute Rayleigh number 
In  $84.1 and 4.2 we have presented the dependence of Nu on Ra and 52, but have 
done so always in terms of reduced Rayleigh numbers RaIR, or in terms of relative 
Rayleigh numbers Ra-R,. We now discuss the effect of rotation on heat transfer 
in terms of absolute Rayleigh numbers. This approach affords us the opportunity of 
investigating an interesting phenomenon. 

In  his paper on a rotating cylindrical convection system, Rossby (1969) reported 
two unexpected results for heat transfer in water. One of these, the ‘subcritical’ 
convection, we have already mentioned and have confirmed in our experiments with 
helium I .  The second unexpected result reported by Rossby shows a maximum 
Nusselt number for a fixed absolute Rayleigh number at some Taylor number other 
than 0; that is, for a given temperature difference, water transports more heat in 
convection while at a certain rotation rate than when not rotating. I n  their 
three-dimensional numerical analysis Sommerville & Lipps (1972) verified that one 
could expect the Nusselt number to have a maximum for a given Ra at some 4 > 0 
when Pr = 6.8. Rossby did not see this behaviour of heat transfer in mercury, which 
has a Prandtl number Pr = 0.025, about two orders of magnitude smaller. Our 
experiments with helium I afforded us the range of Prandtl number one order of 
magnitude smaller than that of water. 

We have investigated similar ranges of (Ra, Nu, 52)-space where Rossby’s data 
showed a clear maximum in Nu for a given Ra and for some 4 > 0. For this 
investigation we gradually increased AT with 52 = 0 until a desired Rayleigh number 
was reached. After the system came to equilibrium, the Nusselt number was 
computed from the measured W, and AT. At this point 4 was increased to values 
between 0 and 300 (corresponding to Taylor numbers between 0 and 4 x lo5), and 
a t  each value the system was given time to equilibrate. Any adjustments needed in 
W, to maintain the same AT were made and the resultant Nusselt numbers were then 
calculated. The uncertainties inW, and AT resulted in a maximum uncertainty in Nu 
of k0.04. The results of this investigation, as can be seen in figure 7 ,  indicate no 
maximum Nusselt number for 0 > 0 or for Pr % 0.5. 
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5. Summary 
Some general features expected of the effect of rotation on heat transfer in 

convection have been verified. In particular, the initial slope characteristic of con- 
vective heat transfer increases as 52 is increased from 0. We have also shown that, 
as expected, the overall effect of rotation is to increasingly inhibit the amplitude of 
convection motions, and thus the heat transfer, as 52 is increased. There is, however, 
a range of Pr for which the Nusselt number, measured a t  Ra-RJD) = 2 x lo3 (or 
equivalently d(Nu)/d(Ra)), displays a maximum for some 52 > 0. This maximum 
occurs a t  52 x 30 and in the Prandtl-number range 0.3 < Pr < 0.6. In contrast to 
the observations by Rossby of convecting water, normal fluid *He does not display 
maximum Nu for a fixed Ra at  any 52 other than 0. 

Various effects of the finite cell size and shape in convection have been investigated 
and we have shown that, although the initial slope Nl increases with Tat SZ = 0, this 
behaviour is reversed in the range 100 < SZ c 250. Heat-transfer characteristics of 
the subcritical convection mode have also been investigated and reported here, 
although we have deferred the detailed discussion of our investigations of charac- 
teristics of this convective mode to a future communication. 

This research was supported by the National Science Foundation Heat Transfer 
Program under grant MEA 82-12102. We are grateful to Mr Steve Predko for building 
the new cells. 
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